TRANSFORMER BUSHINGS Product Spectrum

Bushings are the components of the Power Transformer specified to realize the connection to the high voltage electrical network and switchgear devices, allowing the flow of the electrical power. Power Transformers need extremely reliable High Voltage Bushings

for performing their task. The highest product quality level is therefore essential.

Bushings must be able to carry the Power Transformer current of thousands of Amperes, while subjected to high voltage of thousands of Volts, withstanding mechanically stressed conditions.

Should the Bushing fail its task, the complete function of the Power Transformers will be jeopardized and, in some cases, the Transformers could also go to fire.

We are **world leaders** in power engineering and in the design of specialized electrical products, with long history as manufacturers of high-voltage bushings, in both **Dry and Oil impregnated technologies**, using state-of-the-art manufacturing and testing facilities. Our bushings are certified in accordance with the latest international standards, such as ISO/EN, IEC, IEEE, CSA, NFC.

Our Solution

HSP & Trench provide a wide range of bushing products, including bushings for power transformers and HVDC transmission. HSP & Trench transformer bushings are designed to be connected to oil-insulated and ester power transformers and operate with the following environmental media: outdoors, cable junction box-oil and gas insulated substations. Our product spectrum includes transformer bushings with condenser grading and a choice of active part insulation: resin-impregnated paper (RIP), resin-impregnated synthetic bushings (RIS), resin-impregnated glassfiber (RIG), oil-impregnated paper (OIP) and ester fluid impregnated paper.

PROVEN RELIABILITY

Pioneer of Dry-type Bushings technologies
More than 80 years experience in bushing manufacturing
More than 380,000 units installed worldwide in various environments and under operation for decades

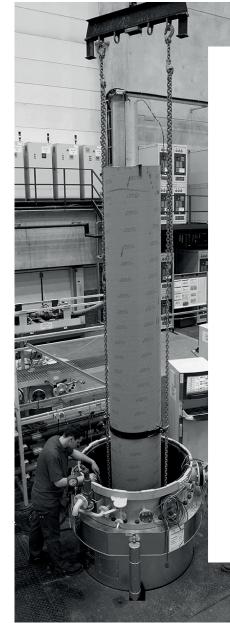
PREMIUM QUALITY

 Extremely Robust Design through best-in-class insulating stress control, increasing safety, durability & reliability
Rigorous Quality Control for entire supply chain and manufacturing processes

EVOLVING PORTFOLIO

Complete Product Portfolio available **up to 1200 kV** High level of customization allows us to meet the widest range of customer design requirements based on various industry standards (IEC, IEEE, GOST, etc.) and to match other vendors' products for replacements

CONTINUOUS INNOVATION

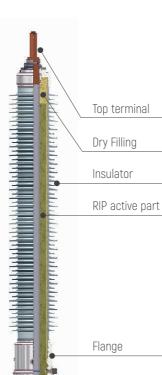

 We are finely tuned to our customers' evolving requirements, constantly innovating with improved, more efficient and more environmentally-friendly products and technologies

GLOBAL PRESENCE

 Our worldwide presence ensures customer proximity, allowing access to expert technical support at all times
Largest production capacity offering maximum flexibility for our customers

Key component for the transformer reliability

RIP technology


The insulating body of the RIP condenser bushing (Resin Impregnated Paper) is made of special paper vacuum-impregnated with epoxy resin. During the winding process, conductive layers made of aluminum foil are inserted between the paper for grading the electric field. Thanks to their good conductivity, optimum voltage distribution is guaranteed even in case of rapid voltage changes.

After the winding process, the core is impregnated under vacuum with epoxy resin and hardened to form the solid condenser core. It receives its final shape by means of turning.

RIP bushings present no technological constraints with regard to the installation position.

All RIP bushings could be equipped with porcelain or composite outdoor insulators.

All our composite insulators have fiberglass tubes as additional protection providing safety, higher mechanical protection, increased seismic performance and extended lifetime of the bushing.

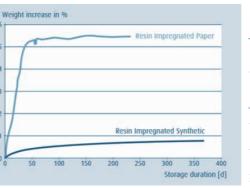
AC and HVDC application

HSP & Trench is pioneer and leader for dry type HVDC design.

Today we offer special HVDC bushings for high voltage direct-current transmission systems, which can be connected to HVDC transformers, according to the maximum installed power in the world: 1200kV rated voltage, to allow a transmitted power capacity of 12 GW.

In addition to standardized products, we also offer our customers individualized products tested in our fully equipped, internationally accredited test facility.

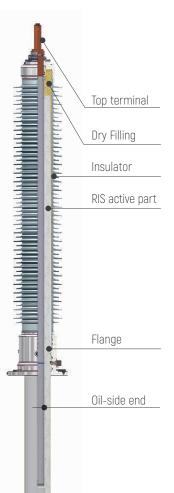
of the bushing.



RIStechnology

- RIS (Resin Impregnated Synthetic) bushings, the new paper-free bushings, are based on the RIP technology that has been proven in use for more than 60 years now.
- RIS bushings are characterized by their extremely stable dielectric properties, which are attributable in part to the major reduction in moisture absorption at exposed active surfaces, (e.g. the oil end of transformer bushings), thanks to the paper-free active part.
- All RIS bushings could be equipped with porcelain or composite outdoor insulators. All our composite insulator have fiberglass tubes as additional protection providing safety, higher mechanical protection, increased seismic performance and extended lifetime

Available portfolio up to 550kV - 3000A.



Cost efficient ong term storage

۲

The RIS type bushings offer the following advantages:

- Not sensitive to humidity ingress during transport and storage
- Highly stable dielectric properties
- Partial discharge free
- Homogeneous field profile
- Optimized production process
- Positive effect on service life
- Available for ambient temperature up to -60°C

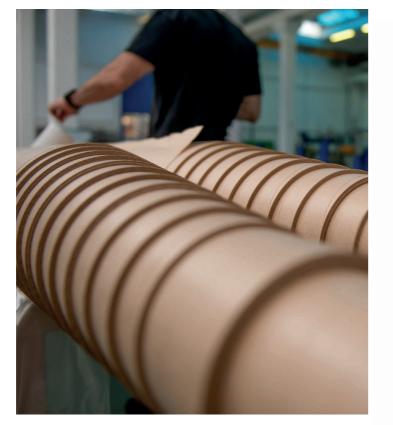
\bigcirc	
\bigcirc	

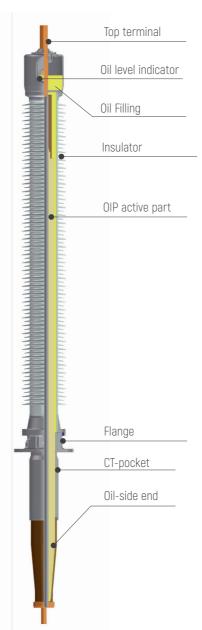
A

						KEY ⁻	TECHNI	CAL DA	TA - IE	C						
	Standard						IEC 60	0137-201	7							
	U _m	kV	24	36	52	72,5	100	123	145	170	245	300	362	420	550	800
	Lightning impulse (BIL)	kV	125	170	250	325	450	550	650	750	1050	1050	1175	1550	1800	2400
	Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	850	850	950	1175	1300	1550
	Maximum Rated Current (Draw-lead/removeable cond.)	А	800/ 1600	800/ 1600	800/ 1600	800/ 1600	-	800/ 1600	800/ 1600	800/ 1250	800/ 1250	-	-	-	-	-
STANDARD	Maximum Rated Current (Solid conductor)	А	2500	2500	2500	2500	-	2000	2000	2000	1600	-	-	-	-	-
STAI	Temperature range	°C			-30°C,	/ +40°C sta	andard - d	lown to -6	D°C up to	+55°C avai	lable on re	equest				
0,	Seismic withstand			Up to 0.5 (]	Stand	lard desigr	n up to O.	3 g acc. to) IEC 61463	-2016					
ED	Maximum Rated Current (Draw-lead/removeable cond.)	А	1250/ 2500	1250/ 2500	1250/ 2500	1250/ 2500	1250/ 2500	1250/ 2500	1250/ 2000	1250/ 2000	1250/ 2000	1250/ 2000	1250/ 2000	1250/ 1600	1250/ 1600	1250/ 2000
CUSTOMIZED	Maximum Rated Current* (Solid conductor)	A	4000	4000	4000	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	1600
SUS	Temperature range	°C		-30°(C / +40°C s	standard -	down to -	-60°C up t	o +55°C ca	apability u	p to 550k\	/ upon req	luest			
	Seismic withstand					0.5g acc. t	to IEC 6146	3-2016 up	to 550kV a	available o	n request					
				Key Teo	chnical	Data -	IEEE								A	

			Ke	ey Tech	inical D)ata - I	EEE						
Standard IEEE C57.19.01-2017													
U _m	kV	25	34,5	46	69	115	138	161	230	345	500	765	
Lightning impulse (BIL)	kV	150	200	250	350	550	650	750	900	1175	1675	2050	
Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	825	1175	1450	
Maximum Rated Current (Draw-lead/removeable cond.)	А	800/ 2000	-										
Maximum Rated Current** (Solid conductor)	А	5000	5000	4000	4000	3000	4000	3000	5000	3000	3000	2000	
Temperature range °C -30°C to +40°C standard; down to -60°C up to +55°C available on request available on request Seismic withstand High seismic level up to 500 kV for certain designs only, acc. to IEEE 693-2018 available on request													
Seismic withstand High seismic level up to 500 kV for certain designs only, acc. to IEEE 693-2018													

						KEY ⁻	TECHN	CAL DA	ATA - IE	C						
	Standard						IEC 6	0137-201	17							
	U _m	kV	24	36	52	72,5	100	123	145	170	245	300	362	420	550	550
	Lightning impulse (BIL)	kV	125	170	250	325	450	550	650	750	1050	1050	1175	1550	1675	1800
	Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	850	850	950	1175	1175	1300
RD	Maximum Rated Current (Draw-lead/removeable cond.)	А	800/ 1600	800/ 1600	800/ 1600	800/ 1600	-	800/ 1600	800/ 1600	800/ 1250	800/ 1250	-	-	-	-	-
-ANDA	Maximum Rated Current (Solid conductor)	А	2500	2500	2500	2500	-	2000	2000	2000	1600	-	-	-	-	-
ST	Temperature range	°C			-30°C	/+40°C sta	andard; do	wn to -60	°C up to +	55°C availa	able on red	quest				
ZED	Maximum Rated Current (Draw-lead/removeable cond.)	А	800/ 2500	800/ 2500	800/ 2500	800/ 2500	800/ 2500	800/ 2500	800/ 2000	800/ 2000	800/ 2000	800/ 2000	800/ 2000	800/ 1600	1250/ 1600	1250/ 1600
CUSTOMIZE	Maximum Rated Current* (Solid conductor)	А	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	2500	2000
CU	Temperature range	°C			-30°C	/+40°C sta	andard; do	wn to -60°	°C up to +{	55°C availa	ble on rec	luest				


			Ke	ey Tech	nical D	ata - II	EEE					
Standard IEEE C57.19.01-2017 Um kV 25 34,5 46 69 115 138 161 230 345 500												
U _m	kV	25	34,5	46	69	115	138	161	230	345	500	500
Lightning impulse (BIL)	kV	150	200	250	350	550	650	750	900	1175	1675	1800
Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	825	1175	1175
Maximum Rated Current (Draw-lead/removeable cond.)	A	400	400	400	400	800	800	800	800	800	800	800
Maximum Rated Current** (Solid conductor)	A	5000	5000	4000	4000	3000	4000	3000	5000	3000	3000	3000
Temperature range	nperature range °C -30°C/+40°C standard; down to -60°C up to +55°C available on request											


technology

The condenser body of OIP (Oil Impregnated Paper) bushings is manufactured winding around a central conductor insulating kraft paper, dried under temperature and vacuum and then impregnated with insulating mineral oil. During the winding process, a series of aluminum foils are coaxially inserted between the layers of the paper, to achieve the best possible distribution of the radial and longitudinal electrical gradients between the central tube and the flange, which is grounded. Every winding is then impregnated with mineral oil. Each bushing is placed under pressure to ensure thorough impregnation and to test that it is properly sealed. After impregnation, the bushing is head filled with a nitrogen cushion.

All OIP bushings could be equipped with porcelain or composite outdoor insulators.

						Key 1	Technic	al Data	a - IEC							
Standard IEC 60137-2017																
	U _m	kV	24	36	52	72,5	100	123	145	170	245	300	362	420	550	550
	Lightning impulse (BIL)	kV	125	170	250	325	450	550	650	750	1050	1050	1300	1425	1675	1800
	Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	750	850	950	1050	1175	1300
ں ا	Maximum Rated Current (Draw-lead/removeable cond.)	А	1000/ 1250	1000	1000	1000	1000	1000								
Ē	Maximum Rated Current (Solid conductor)	А	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150
	Temperature range	°C			-30°C /	/ +40°C sta	andard - d	own to -6(D°C up to -	⊦55°C avai	lable on re	quest				
	Seismic withstand			0							cept 550k\ certain de					

Key Technical Data - IEEE												
	Standard IEEE C57.19.01-2017											
	U _m	kV	25	34,5	69	115	138	161	230	345	500	
	Lightning impulse (BIL)	kV	150	200	350	550	650	750	900	1175	1675	
	Switching impulse (SIL)	kV	-	-	-	-	-	-	-	825	1175	
	Maximum Rated Current (Draw-lead/removeable cond.)	A	800/ 1200	800	800							
Ш	Maximum Rated Current (Solid conductor)	А	3000	3000	3000	3000	3000	3000	3000	3000	3000	
	Temperature range	°C	-30°C to) +40°C sta	andard; lov	ver tempe	ratures ar	nd up to +5	55°C availa	ble on rec	luest	
	Seismic withstand			Stan	dard desig	ın: Low sei	smic level	acc. to IE	EE 693-201	18		

IEEE OIP bushings are branded "STAROIP" and "STARON" and manufactured under Siemens Energy license

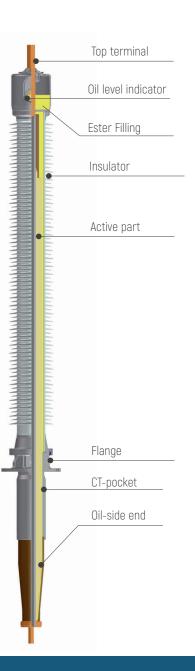
Ester impregnated bushing

HSP&Trench helps you to reduce the environmental impact and developed the **first Ester fluid insulated bushing** on the market. The Ester bushing portfolio is derived from the design of standard OIP transformer portfolio, providing the same main features and full product range available.

In addition, Ester impregnation brings complementary customer benefits:

- Readily **biodegradable**
- Reduced containment measures for transformer installation or bushing storage
- Fire safety
- Demanding overload conditions
- Longer working life, thanks to the improved life characteristics of kraft paper when combined with ester liquid

Available with composite and porcelain outdoor insulator. Can be used for traditional oil transformers as well as for ester transformers.


Eco-friendly bushing solution

Increased Safety and extended lifetime

	Кеу	Tech	nical D	lata - I	EC				
	Standard	IEC	60137-2	2017					
	U _m	kV	72,5	100	123	145	170	245	
	Lightning impulse (BIL)	kV	325	450	550	650	750	1050	pot a
	Switching impulse (SIL)	kV	270	375	460	540	620	850	n redu
.)	Maximum Rated Current (Draw-lead)	А	800	800	800	800	800	1000	available on reguest
	Maximum Rated Current (Removeable conductor)*	А	1250	1250	1250	1250	1250	1250	Hidher ratings are
	Temperature range	°C		-30°C	/ +40°C st	andard			Hinher
	Seismic withstand		Standard o st: IEEE 69						*

TRANSFORMER BUSHINGS | 2021

Other transformer connections

High current bushings are designed to connect an oil filled power transformer (GSU) to a generator bus in a duct. Different designs are available based on the transformer rated current and service conditions, such as the ambient temperature in bus duct.

Oil-to-gas types are used for the direct connection of power transformers to gas-insulated switchgear; oil-to-oil types are designed for direct connections within the power transformer and cable-junction box.

It is no longer required to join the transformers to the switchgear by means of overhead lines or cables, thus saving outdoor bushing or cable end boxes on both switchgear and transformer side.

The design of bushings connecting transformers and gas insulated switchgears is in line with latest requirements of IEC 62271-211 for gas side connection.

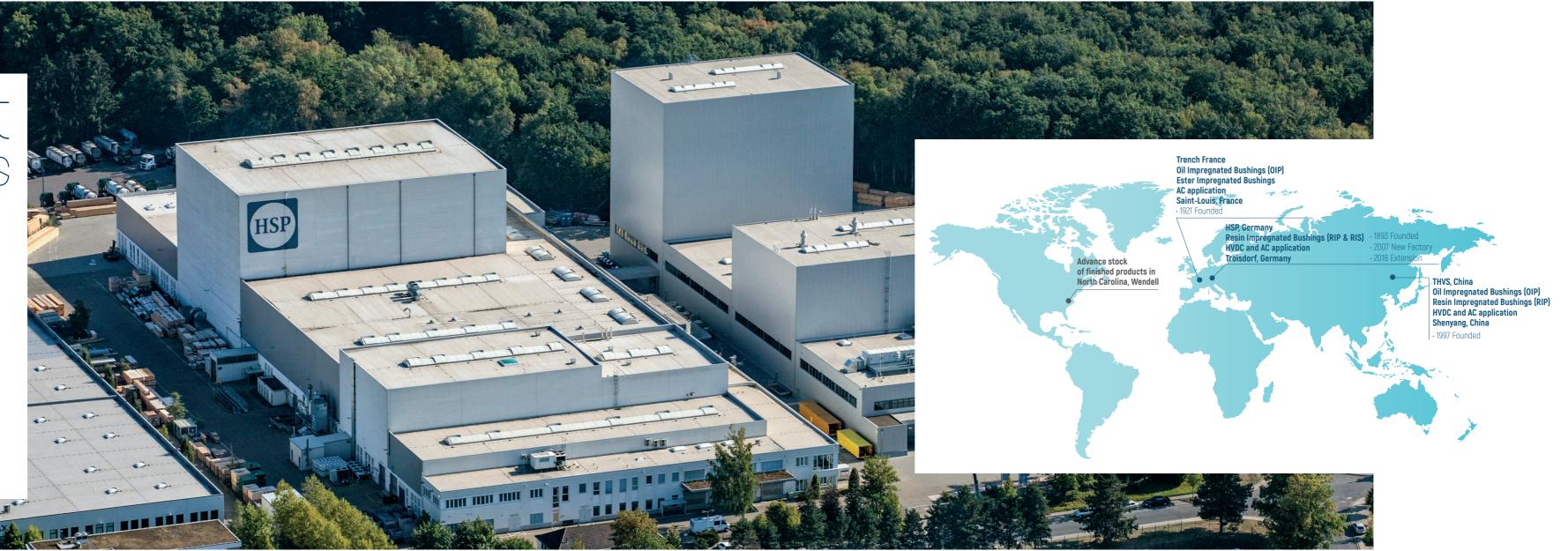
These connection types are available with different insulating technologies.

• Up to 1.600 A

Cable junction box Transformer

SF6 switchgear & Cable junction box 1.1 Transformer -Transformer -

RIG/RIP technology


• 24 – 36 kV • Up to 31.500 A

Global Footprint and technologies

"Full engineering and R&D team available in France, Germany and China to support your requests "

INSTALLED BASE: • OIP technology: 230.000 bushings installed • RIP/RIS technology: 150.000 bushings installed

We are standing for high quality and the best technology, we are focused on constantly reducing delivery time. Our average lead times got reduced by 30% over the last two years.

HSP Hochspannungsgeräte GmbH

Camp-Spich-Str. 18 53842 Troisdorf-Spich, Germany Phone: +49 (0) 22 4125 26-0 Fax: +49 (0) 22 41 25 26-116 E-mail: contact@hspkoeln.de

Trench France SAS

16, Rue Général Cassagnou B.P. 80070 68302 Saint-Louis Phone: +33 3 89 70-23 23 Fax: +33 3 89 67 23 08 E-mail: tf-sales@trench-group.com

Trench High Voltage Shenyang

No. 2 Jingshenxisan Street Daiyi Economic Development Zone Shenbei New District, Shenyang 110136 People's Republic of China Phone: 86-24-8 89 23 99 Fax: 86-24-89 73 72 00E E-mail: mkt.thvs@trench-group.com

www.trench-group.com/bushings/